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Conservative non-linear oscillatory systems can often be modelled by potentials having
a rational form for the potential energy [1, 2]. In addition to providing physical models of
interesting non-linear dynamics, they also lead to di!erential equations for which the usual,
expansion in a small parameter, perturbation procedures do not apply [3]. An example is
the Du$ng-harmonic oscillator
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and the dropping of the &&bar'' on tM , gives the following non-dimensional equation which is
free of non-essential parameters:
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Note that for x, respectively, small and large, equation (3) becomes

x small xK#x3K0, x large xK#xK0. (4a, b)

Thus, for x small, the equation of motion is that of a Du$ng-type non-linear oscillator,
while for large x, the equation of motion approximates that of a linear harmonic oscillator;
hence, the name for equation (3), the Du$ng-harmonic oscillator.

The main purpose of this Letter is to construct an analytical approximation to the
solutions of equation (3) using the method of harmonic balance, and to both construct and
analyze non-standard "nite di!erence schemes [4] to numerically examine the solutions of
equation (3).

Using the concept of phase-space [5, 6], i.e., the two-dimensional space with variables
(x, y,dx/dt), and applying various symmetry arguments, it is easy to demonstrate that all
the curves in the phase-space corresponding to equation (3) are closed. Consequently, all
motions for arbitrary initial conditions give periodic solutions. The energy function or
"rst-integral for equation (3) is given by
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where the "rst term is the kinetic energy and the second term is the potential energy
function which is given by the expression
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An analytical approximation to the periodic solutions can be obtained by taking the
following form for a "rst approximation based on the method of harmonic balance [3]:

x (t)Ka cosut. (7)

With the initial conditions, x(0)"A and xR (0)"0, this approximate solution is given by the
following values for the amplitude a and the angular frequency u:

a"A, [u (A)]2"
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Observe that for small and large amplitudes

A small [u(A)]2KA
3

4B A2, A large [u(A)]2K1, (9a, b)

which agrees with the approximations to the equations of motion given in equations (4).
A conjecture will now be formulated regarding the exact angular frequency of the

solutions to equation (3), based on the initial conditions stated above, x(0)"A and
xR (0)"0. The exact angular frequency for the equation
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where F (j, n/2) is a complete elliptic integral of the "rst kind with modulus j [8]. Now
de"ne the constant / by

/,
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From these results and those given in equations (8) and (9), the conjecture is: the exact
angular frequency for the periodic solutions to equation (3) is
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To preserve the conservative nature of the non-linear oscillator under investigation, any
discrete (in this case, "nite di!erence) model of the Hamiltonian or energy function must
possess the property of being invariant under the interchange [9]
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and h"Dt is the time step. This implies that the discrete equations of motion do not change
if [9]
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Since the energy function or Hamiltonian for equation (3) is
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the most direct way of implementing the condition of equation (14), in the construction of
a discrete Hamiltonian, is to use the form [4, 9]
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where t is a function of step size h and has the property

t (h)"h#O(h2). (19)

Applying the di!erence operator, D, to H (x
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following expression:

x
k`1

!2x
k
#x

k~1
t2

#x
k
!x

k C
ln(1#x

k`1
x
k
)!ln(1#x

k
x
k~1

)

x
k`1

x
k
!x

k
x
k~1

D . (20)

Note that this expression is an implicit function of x
k`1

; consequently, a complex
transcendental equation must be solved to give x

k`1
in terms of x

k
and x

k~1
. Another

possibility is to start with the equation of motion, namely, equation (3), and construct
a non-standard "nite di!erence scheme from it [4]. The simplest of such schemes which is
non-local in the non-linear term [4, 9] and explicit is
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where now the symbol / denotes /"sin(h). Shifting the index k upward by one unit and
solving for x

k`2
gives
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Given the values of x
0
and x
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and all subsequent values of x
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can be calculated to obtain

a numerical solution to equation (3). With the initial conditions, x(0)"x
0

and xR (0)"0,
a simple calculation shows that
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Figure 1 gives plots of x
k

versus k for h"0)05, x(0)"x
0
"1 and xR (0)"0. Similar plots

occur for other values of the initial conditions as long as the step size is selected to be
su$ciently small to adequately resolve the oscillatory nature of the solution. This value can
be easily estimated by using the harmonic balance prediction of the period
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Figure 1. (a) Numerical solution of the Du$ng-harmonic non-linear oscillator for x(0)"1 and xR (0)"0. The
middle and bottom graphs are phase-space plots, where the discrete momenta are taken to be (b)
p
1k
"(x

k
!x

k~1
)// and (c) p

2k
"(x

k`1
!x

k~1
)/2/.

566 LETTERS TO THE EDITOR
and choosing Dt"h to be
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i.e., h is (approximately) one-twentieth the period. Using the conjectured exact angular
frequency, equation (13), in the harmonic balance approximation, equation (7), good
agreement is found between the analytical approximate solution and the numerical results.
In particular, all the curves in phase-space were found to be closed as expected from our
analysis.

In summary, the Du$ng-harmonic oscillator has all periodic solutions and harmonic
balance gives a good estimate for the angular frequency, i.e., equation (8) and its
generalization, equation (13). Two non-standard "nite di!erence schemes were constructed
and the explicit scheme was used to numerically integrate the equation of motion. Further
work on the Du$ng-harmonic equation will center on trying to prove the relation
conjectured in equation (13).
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